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                                                  LIST OF SYMBOLS 
 

LOGIC  

p ⇒ q  The logical implication 

p ⇔ q The logical equivalence 

∀ x For all x  

∃ x  For some x 

SET THEORY  

x ∈ A Element x is a member of set A 

x ∉A Element x is not a member of set A 

⏐A⏐ The cardinality of set  A 

 ⎣ x ⎦ The greatest integer less than or equal to the number x 

A ⊂ B A is a subset of  B 

A ∪ B The union of sets  A, B 

A ∩ B The intersection of sets A, B 

NUMBERS  

Z The set of integers: {0, 1, -1, 2, -2, 3, -3, … } 

N The set of nonnegative integers: {0, 1, 2, 3, … } 

a ⏐ b  a  divides  b, for a, b ∈ Z,  a ≠ 0 

⎣ x ⎦ The greatest integer less than or equal to the real number x 

a ≡ b  (mod n) a is congruent to b modulo n  

GRAPH  THEORY  

G = (V, E) G  is a graph with vertex set V and edge set E 

T = (V, E) T  is a tree  with vertex set V and edge set E 

G1 + G2 The joint of the two graphs G1 (V1, E1) and G2 (V2, E2) 

G1 ⊗ G2 The Cartesian product of G1 (V1, E1) and G2 (V2, E2) 

G1 ∪ G2 The disjoint union of the graphs G1 (V1, E1) and G2 (V2, E2) 

G1 ⏐ G2 A G1- decomposition of a graph G2 

Cn C is a  cycle of length n 
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Wn W is a wheel obtained from the cycle Cn 

Rn R is a crown with 2n  edges 

Hn H is a helm with  3n edges 

Pn P is a path  or snake of length n 

Dn (m) D is a dragon obtained  by  joining the end point of path Pm 

to the cycle Cn 

Δn-snake A triangular  snake with n blocks 

Kn The complete graph on n vertices 

Kn1, n2 The complete bipartite graph on n1 + n2 vertices and n1 × n2 

edges 

mKn The windmills graph consists of  m copies of Kn 

Qn Q is the n-cube  

Bn B is a book given by  K1, n  ⊗ K2 

ZT The base of a  tree T 

T* A tree obtained from T by replacing every edge of T by a 

path of length 2 

GRAPH  LABELING  

Ψ(V, E) A labeling of  a graph G (V, E) 

Ψ⊕(V, E) The complementary  labeling of  a graph G (V, E) 

Ψ◊(V, E) The inverse labeling of  a graph G (V, E) 

Ψ(v) The label of vertex  v 

Ψ•(e) The label of edge e 

Φ(V, E) The k-graceful labeling of a graph G (V, E) 

Γ(V, E) The k-sequential labeling of a graph G (V, E) 

γ The special number in an α-labeling of a Graph G (V, E) 

Nk (n) The number of αk-valuation of Pn 
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1.  INTRODUCTION 
 
A graph G = (V,E) consists of two finite sets: V(G), the vertex set of the graph, often 

denoted by just V, which is a nonempty  set of elements called vertices, and E(G), the 

edge set of the graph, often denoted by just E, which is a set (possibly empty) of elements 

called edges. A graph, then , can be thought of as a drawing or diagram consisting of a 

collection of vertices (dots or points) together with edges (lines) joining certain pairs of 

these vertices. Figure 1  provides a graph G = (V,E) with V(G) = { v1, v2, v3, v4, v5 } and 

E(G) = { e1, e2, e3, e4, e5, e6, e7 }. 

 
 
 
 
 
 
 
 
                           Figure 1: A graph G with five vertices and seven edges 
 
Sometimes we represent  an edge by the two vertices that it connects. In Figure 1  we 

have  e1 = (v1, v2), e2 = (v1 ,v4). An edge e of graph G is said to be incident with the vertex 

v if v is an end vertex of e. For instance in Figure 1  an edge e1 is incident with two 

vertices v1 and v2. An edge e having identical end vertices called a loop. In other words, 

in a loop a vertex v is joined to itself by an edge e. The degree of a vertex v, written d(v), 

is the number of edges incident with v. In Figure 1  we have d(v1) = 3, d(v2) = 2, d(v3) = 

3, d(v4) = 4 and  d(v5) = 2. If for some positive integer k, d(v) = k for every vertex v of 

graph G, then G is called k-regular. 

A graph G is called connected if there is a path between every pair of vertices.  When 

there is no concern about the direction of an edge the graph is called undirected. The 

graph in Figure 1  is a connected and undirected graph. Unlike most other areas in 

Mathematics , the theory of graphs has a definite starting point, when the Swiss 

mathematician Leonard Euler (1707-1783) considered the problems of the seven 

Konigsberg bridges. In the early 18th century the city of Konigsberg (in Prussia) was 

v2

v1

v4

v5

v3

 e3 e7

e2

e4e4

 e6
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divided into four sections by the Pregel river. Seven bridges connected these regions as 

shown in Figure 2 (a). Regions are shown by A, B, C, D respectively. It is said that the 

townsfolk of  Konigsberg amused themselves by trying to find a route that crossed each 

bridge just once (It was all right to come to the same island any number of times). 

 
 
   
 
 
 
 
 
 
            (a)                                                                                                         (b)            
  
Figure 2: (a) A map of Konigsberg  (b) A graph representing the bridges of  Konigsberg                                 
 
Euler  discussed  whether or not it is possible to have such a route by using the graph 

shown in Figure 2 (b). He published the first paper in graph theory in 1736 to show the 

impossibility of such a route and give the conditions which are necessary to permit such a 

stroll. Graph theory was born to study problems of this type. 

Graph theory is one of the topics in an area of mathematics described as Discrete 

Mathematics. The problems as well as the methods of solution in discrete mathematics 

differ fundamentally from those in continuous mathematics. In discrete mathematics we 

“count”  the number of objects while in continuous  mathematics we “measure” their 

sizes. Although discrete mathematics began as early as man learned to count, it is 

continuous mathematics which has long dominated the history  of mathematics. This 

picture began to change in twentieth century. The first important development was  the 

change  that took place in the conception of mathematics. Its central point changed from 

the concept of a number to the concept of a set which was more suitable to the methods 

of discrete mathematics than to those of continuous mathematics. The second dramatic 

point was the increasing use of computers in society. Much of the theory of computer 

science  uses  concepts of discrete mathematics. 

  C 

  A 

B D

A

 B

  C

D
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Graph theory as a member of the discrete mathematics family has a surprising number 

of applications, not just to computer science but to many other sciences (physical, 

biological and social), engineering and commerce. 

Some of the major themes in graph theory are shown in Figure 3. Most of these topics 

have been discussed in  text  books. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    Figure 3: Some topics in Graph Theory 
 
 
The purpose of this book is to provide some results in a class of problems  categorized as 

Graph labeling. Let G be an undirected graph without loops or  double connections 

between vertices. In labeling (valuation or numbering) of a graph G, we associate distinct 

nonnegative integers to the vertices of G as vertex labels (vertex values or vertex 

numbers) in such a way that each edge receives a distinct  positive integer as an edge 

label (edge value or edge number) depending on the vertex labels of vertices which are 

incident with this edge.  

Interest in graph labeling began in mid-1960s with a conjecture by Kotzig-Ringel and a 

paper by Rosa[90]. In 1967, Rosa published a pioneering paper on graph labeling 

problems. He called a function ƒ a β-labeling of a graph G with n edges (Golomb [45] 

subsequently called such labeling graceful and this term is now the popular one)  if  ƒ is 

an injection from the vertices of G  to the set {0, 1, … , n} such that, when each edge is 

labeled with the absolute value of  the  difference between the labels of the two end 
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vertices, the resulting edge labels are distinct. This labeling provides a sequential labeling 

of the edges from 1 to the number of edges. Any graph that can be gracefully labeled is a 

graceful graph. 

Examples of graceful graphs are shown in Figure 4. Other examples of graceful graphs 

will be shown in the next chapter. 

  
 
 
 
 
 
 
                             Figure 4:  Examples of graceful labeling of graphs 
 
Although numerous families of graceful graphs are known, a general necessary or 

sufficient condition for gracefulness has not yet been found. Also It is not known if all 

tree graphs are graceful. 

Another important labeling is an  α-labeling or α-valuation which was also introduced by 

Rosa [90]. An α-valuation of a graph G is a graceful valuation of G which also satisfies 

the following condition: there exists a number γ (0 ≤ γ < E(G)) such that, for any edge     

e∈ E(G) with the end vertices u, v ∈ V(G),  

 
min { vertex label (v), vertex label (u) } ≤  γ  <  max { vertex label (v), vertex label (u) } 
 

It is clear that if there exists an α-valuation of graph G, then G is a bipartite graph. The 

first graph in Figure  4 is a path with six  edges and it has an α-labeling with γ =3. 

During the past thirty years, over 200 papers on this topics have been appeared in 

journals. Although the conjecture that all trees are graceful has been the focus of many of 

these papers, this conjecture is still unproved. Unfortunately there are few general results 

in graph labeling. Indeed even for problems as narrowly focused as the ones involving 

the special classes of graphs, the labelings have been hard-won and involve a large 

number of cases. 

Finding a graph that possesses an α-labeling is another common approaches in many 

papers. The following condition (due to Rosa) is known to be necessary and in the case of 
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cycles also sufficient for a 2-regular graph G = (V,E) to have an α-labeling:             

⏐E(G)⏐≡ 0 (mod 4). In 1982, Kotzig conjectured that this condition is also sufficient for 

a 2-regular graph with two components. In 1996, Abrham and Kotzig have shown that 

this conjecture is valid.  

Terms and notation not defined in this book follow that used in [28] and [29].
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2.  BASIC DEFINITIONS 
 
Let G = (V,E) be a graph with m =⏐V⏐vertices and n =⏐E⏐edges. By the term graph, we 

understand a connected, undirected finite graph without loops or multiple edges. 

 
Definition 1: A labeling (or valuation)  of a graph G = (V,E) is a one-to-one mapping Ψ 

of the vertex set V(G) into the set of non negative integers that induces for each edge 

{u,v}∈ E(G) a label depending on the vertex labels Ψ (u) and Ψ(v). 

 
Definition 2: A graceful labeling (or β-valuation) of a graph G = (V,E) with                  m 

=⏐V⏐vertices and n =⏐E⏐edges is a one-to-one mapping Ψ of the vertex set V(G) into 

the set { 0,1,2, … ,n } with the following property:  

If we define, for any edge e ={u,v}∈ E(G) ,  the value Ψ•(e) = ⏐ Ψ(u)-Ψ(v) ⏐ then Ψ• is 

a one-to-one mapping of the set E(G) onto the set { 1,2, … ,n}. 

 
A graph is called graceful if it has a graceful labeling. The concept of a β-valuation was 

introduced by Rosa [90] in 1966. Then in 1972 Golomb [45] called such labeling graceful 

and this name was popularized by mathemagician Martin Gardner [44]. This terminology 

is now the most commonly used. Let Kn, Cn and T denote respectively a complete graph 

on n vertices, a cycle of length n and a tree, then Figure 5  gives us graceful labelings of 

K3, C4, tree T and the Petersen graph: 

 
 
 
 
 
 
 
 
 
 
         K3                              C4                                        T                         Petersen  Graph 
                                                   

                                                    Figure 5: Some graceful graphs 
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Not all graphs are graceful, for example C5 and Kn  for n > 4 are not graceful [45]. A 

given graph may have several distinct graceful labelings as it is shown in Figure 6: 

 
 

 

 

 

 

    

 
 
                                   Figure 6: Several graceful labelings of a graph   
 
Sheppard [94] has shown that there are exactly n! gracefully labeled graphs with n edges. 

Erdos [40] in an unpublished paper proved that most graphs are not graceful. In Figure 7, 

we present four non-graceful graphs, see [21] for a proof that K5 and C5 are not graceful, 

see [22] for the third graph, and [24] for the last graph: 

 

 
 
 
 

Figure 7: Some non-graceful graphs 
 
Notice that a subgraph of a graceful graph need not be graceful. For example C5 is a 

subgraph of a Petersen  graceful graph but C5 is not graceful. In [90] Rosa also defined an 

α-labeling of a graph, a graceful labeling with an additional property, as follows: 

 
Definition 3: An α-labeling (or α-valuation) of a graph G = (V,E) is a graceful labeling 

of G which satisfies the following additional condition: 

There exists a number γ (0 ≤ γ ≤ ⏐E(G)⏐) such that, for any edge  e ∈ E(G) with the end 

vertices u,v ∈ V(G), it has   min [Ψ(u),Ψ(v)] ≤ γ < max [Ψ(u),Ψ(v)]. 

 
For instance C4 in Figure 5 has an α-valuation with γ = 2 and in Figure 6 the first three 

trees have  an α-labeling with γ1 =1, γ2 =3, γ3 =3 but the last tree does not. 

3
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Definition 4: The values of an α-labeling Ψ which are ≤ γ will be referred as “small 

values” and the remaining values of  Ψ as the “large values” of a given α-valuation. 

 
The small values of an α-valuation of C4 in Figure 5 are {0,2} and the large values are 

{3,4}. The definitions 3 and 4 imply that a graph with an α-valuation is necessarily 

bipartite and therefore cannot   contain a cycle of odd length. 

In 1992, Gallian [43] weakened the condition for an α-valuation by the following 

definition: 

 
Definition 5: A weakly  α-labeling (or a weakly α-valuation) of a graph G = (V,E) is a 

graceful labeling of G which satisfies the following additional condition: 

There exists s number γ∗ (0 ≤ γ∗ ≤ ⏐E(G)⏐) such that , for any edge  e ∈ E(G) with the 

end vertices u,v ∈ V(G), it has    min [Ψ(u),Ψ(v)] ≤ γ∗≤ max [Ψ(u),Ψ(v)]. 

 
Therefore the condition for weakly α-labeling allows the graph to have an odd cycle. For 

example in Figure 5, K3 has no α-labeling but it has a weakly α-labeling with γ∗ = 1. 

Notice that while γ in an α-valuation is the lesser of the two labels whose difference is 1, 

γ∗ in a weakly α-labeling may be either of the two labels whose difference is one. 

Furthermore if a graph has a weakly α-labeling with γ∗ then the vertex labeled γ∗ must be 

on every odd cycle. 

Now we should mention two transformations of α-labeling (graceful labeling) which are 

sometimes useful: 

 
Definition 6: If Ψ is an α-labeling (or a graceful labeling)   of a graph G = (V,E) with        

n =⏐E⏐edges then the valuation Ψ⊕ defined by Ψ⊕(v) = n - Ψ(v) for all v ∈ V(G) is again 

an α-labeling (or a graceful labeling) of G and called complementary labeling (or 

complementary valuation) to Ψ. 

 
Definition 7: If Ψ is an α-labeling  of a graph G = (V,E) with n =⏐E⏐edges and if we put  

Ψ◊(v) ≡ γ - Ψ(v) (mod n+1) for every v ∈ V(G); Ψ◊(v) ⊂ { 0, 1, … , n } then Ψ◊ is again 

an α-labeling of G and called inverse labeling (or inverse valuation) to Ψ. 
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In Figure 8, an α-labeling, a complementary labeling and an inverse labeling of C8 are 

shown: 

 
 
 
 
 
 
 
 
 
        
            Ψ: α-labeling of C8                   Ψ⊕: complementary labeling of C8     Ψ◊: inverse labeling of C8 
  

                     Figure 8: α-labeling and its complementary and inverse valuations of  C8 
 
Although we focus on graceful labeling and α-labeling in this book, we also discuss 

important variations of graceful labeling as follows: 

 
Definition 8: A k-graceful labeling of a graph G = (V,E) with n = ⏐E(G)⏐edges is a one-

to-one mapping f of the vertex set V(G) into the set {0,1,2, …,n+k-1} such that the set of 

edge labels induced by the absolute value of the difference of the labels of adjacent 

vertices is {k,k+1,k+2, … ,n+k-1}. 

 
The concept of k-graceful labeling was introduced simultaneously by Slater [98] and by 

Maheo and Thuillier [84]. Now let us define a wheel  Wn as a graph obtained from the 

cycle Cn by adding a new vertex and edges joining it to all the vertices of the cycle; n is 

assumed to be at least three. In Figure 9, a 7-graceful labeling of C15 and a 3-graceful 

labeling of W7 are shown  

                                                                         
                              
                                   
 
 
 
 
                          
 
                          Figure 9: 7-graceful labeling of C15   and 3-graceful labeling of W7        
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It is obvious that the standard definition of graceful labeling corresponds to a 1-graceful 

labeling. If there exists an α-labeling Ψ of graph G = (V,E) , then for any k ≥ 1 graph G is 

k-graceful with the labeling Φ given as follows: 

                                
              Φ(v) =(  Ψ(v) if Ψ(v) ≤ γ, Ψ(v)+k- 1  if Ψ(v) > γ, v∈ V(G), v∈ V(G) )                       
                               
In Figure 10, an α-valuation of C4 is changed to a 6-graceful labeling by using the above 

transformation: 

 
 
           
 
 
 
                                 An α-valuation of C4                                   6-graceful labeling of C4 
 
                    Figure 10: Transformation of an α-labeling to k-graceful labeling for C4 
 
Graphs that are k-graceful for all k are sometimes called arbitrarily graceful [40]. Ng 

[86] has shown that an α-valuation is properly stronger than k-graceful for all k. 

 
In the following method of labeling; instead of using a function from the vertices of a 

graph to a set of labels, we will use a function from the vertices and edges to a set of 

labels: 

 
Definition 9: A k-sequential labeling of a graph G = (V,E) with n = ⏐E(G)⏐edges and m 

= ⏐V(G)⏐vertices is a one-to-one function Γ from V(G)  ∪ E (G) to{ k,k+1,k+2, … 

,n+m+k-1} such that for each edge e={u,v} ∈ E(G), one has Γ (e) = ⏐Γ(u) - Γ (v)⏐. 

 
A graph G admitting a k-sequential labeling is called a “ k-sequential graph”. If G is a    

1-sequential graph, it is called a simply sequential graph. Simply sequential and 

sequential graphs were first defined in [20]. The wheel W6 and the cycle C4 in Figure 11 

are simply sequential but  graph G1 is  4-sequential: 
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                  W6                                                 C4                                            G1       
  
         Figure 11: Examples of  simply sequential  graphs and a 4-sequential graph    
 
By considering the similarities in definitions of graceful graphs and sequential graphs we 

should not be surprised if there is a connection between these graphs. Now before we 

explain the relation between these two kinds of labeling, let us define the following 

operation in two graphs:   

 
Definition 10:    The join of the two graphs  G1 = (V1,E1) and G2 = (V2,E2) denoted by 

G1+ G2 , is defined as V(G1+ G2) = V1  ∪ V2 ; V1  ∩ V2 = ∅  and E(G1+ G2) = E1 ∪ E2 ∪ 

I  where  I = { (v1,v2): v1∈ V1, v2∈ V2  }. Thus I consists of edges which join every 

vertex of G1  to every vertex of G2.  

 
In [97], Slater proved that a graph G is simply sequential if and only if the join of G and 

an isolated vertex   i.e. G + v has a graceful valuation Ψ with  Ψ(v) =0. 

 
 
 
 
 
 
 
 
 
Figure 12: Corresponding 1-sequential  labeling of C4 and graceful labeling of W4 
                                                                                          
In Figure 12, we see that C4 is simply sequential, then C4 + v or in the other words W4 

has a graceful labeling Ψ with Ψ (v) = 0 as illustrated  in Figure 12 [20].                                                          
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In [15], Acharya has shown a fundamental link between k-graceful and k-sequential 

graphs by generalizing the Slater result: 

  
A graph G is k-sequential if and only if G +v has a k-graceful 

labeling Ψ with Ψ(v) =0.  

 
For example in Figure 13, a 3-graceful labeling W7, shown 

before in Figure 9, is transformed to a  3-sequential labeling 

of  C7.                                                                                      Figure 13:  3-sequential labeling of C7    

                                                                                                                              

The methods of labeling of a graph have been extended rapidly in the last ten years. A 

number of  new  methods of labeling have been investigated such as Cordial Labeling 

[30], Harmonious Labeling [48], Elegant Labeling [31], Prime Labeling [75], and Sum 

Labeling [50]. In two excellent surveys by Gallian [40,41], he has summarized much of 

what is known about each kind. 

Now, we will focus on  graceful labeling and its variations and summarize the results 

obtained  to date about these kinds of labeling in different classes of graphs.                              

We discuss graceful labeling and its valuation on the following classes of graphs (see also 

[40, 41]):  

1. Cycle- related graphs with one component 

2. Complete graphs  

3. Cartesian-related graphs 

4. Tree-related graphs 

5. Disjoint union of graphs 
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3. CYCLE-RELATED GRACEFUL GRAPHS WITH ONE 
COMPONENT 
  
The following necessary condition for gracefulness of a graph G = (V,E) with                   

m =⏐V(G)⏐and  n =⏐E(G)⏐comes directly from the definition 2.2: 

 
Lemma 1 [90]: If G is a graceful graph then m ≤ n+1. 
 
It is clear that the above lemma is satisfied for every connected graph. Using this 

condition we can rule out the existence of a graceful labeling for some disconnected 

graphs, for instance, 1-regular graphs with n >1. 

A connected graph G is called Eulerian if  n > 0 and the degree of every vertex of G is 

even. A necessary condition for the existence of a graceful labeling of an Eulerian graph 

G is proved by Rosa [90]: 

 
Theorem 1 [90]: If G is a graceful Eulerian  graph then n ≡ 0 or 3 (mod 4). 
 
In this theorem, an Eulerian graph is any graph in which the degree of each vertex is 

even; it does not have to be connected.  

For example, K5 and C5 in Figure 7 are Eulerian, but they have 10 and 5 edges 

respectively and thus by the above theorem they are not graceful. 

 
A generalization of Rosa’s theorem for k-graceful Eulerian graphs is as follows: 
 
Theorem 2.2 [15]:  If an Eulerian graph G = (V,E) is k-graceful then either n ≡ 0 (mod 4)  

or   n ≡ 1 (mod 4) when  k is even or n ≡ 3 (mod 4) when  k is odd. 

 
For cycle Cn, the necessary condition in theorem 2.1 is also sufficient: 
 
Theorem 3 [90]: The cycle Cn is graceful if and only if  n ≡ 0 or 3 (mod 4). 
 
Rosa also proved the following result: 
  
Theorem 4 [90]: The cycle Cn has an α-labeling if and only if  n ≡ 0  (mod 4). 
 
Maheo and Thuillier [84] have generalized this result as follow: 
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Theorem 5 [84]: The cycle Cn is k-graceful if and only if  either n ≡ 0  (mod 4) or n ≡ 1 

(mod 4) where k is even and k ≤ (n-1)/2  or n ≡ 3 (mod 4) where k is odd and  k ≤ (n-1)/2. 

 
We also know that: 
 
Theorem 6 [20]: The cycle Cn is 1-sequential.  
 
According to theorem  6 and the connection between 1-sequential and graceful graphs, 

we can conclude that all wheels are graceful: 

 
Theorem 7 [53]: The wheel Wn is graceful for all n ≥3. 
 
The following theorem and conjecture are due to Maheo and Thuillier: 
 
Theorem 8 [84]: W2k+1 is k-graceful for any k ≥ 1. 
 
Conjecture 1 [84]: W2k is k-graceful with k ≠ 3,4. 
 
A crown  Rn is formed by adding to the n points v1, v2, v3, … ,vn of a cycle Cn, n more 

pendant points u1,u2,u3, … ,un and n more lines (ui,vi), i =1,2,3, … ,n for n ≥3. Frucht [35] 

has proved the following theorem: 

Theorem 9 [35]: R2n is graceful for any  n ≥ 3. 
 
We know that a graph admitting an α-labeling must be bipartite and, as such, can not 

contain cycles of odd length. It follows that wheels can not have an α-labeling since they 

contain triangles as subgraphs. For analogous reason, crowns can not have α-labeling if n 

is odd. For even values of n, Frucht  has offered the following conjecture: 

 
Conjecture 2 [35]:  If n ≡ 0  (mod 2) then Rn has an α-labeling. 
 
In Figure 10, we can see a graceful labeling for R5 and an α-labeling for R6: 
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                                   Figure 14: Graceful labeling of R5 and an α-labeling of R6 
 
A helm Hn, n ≥ 3, is the graph obtained from a crown Rn by adding a new vertex joined to 

every vertex of the unique cycle of the crown. Ayel and Favaron [18] proved that: 

 
Theorem 10 [18]: The helm Hn is graceful for every n ≥3. 
 
For example, Figure 15 shows that H5 is graceful: 
 
 
 
 
 
 
  
 
 
 
 
                                                  Figure 15: Graceful labeling of H5 

 
A chord of a cycle is an edge joining two otherwise non adjacent vertices of a cycle. 

Bondendiek [21] conjectured that any cycle with a chord is graceful. This conjecture has 

been proved by Delorme et al.: 

 
Theorem 11 [34]: The graph consisting of a cycle plus a chord is graceful. 
 
Let Pk be a path with k edges and k+1 vertices (as we can see later the term snake is also 

used in this case). Koh and Yap defined a cycle with a Pk-chord as a cycle with a path Pk 
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joining two nonconsecutive vertices of the cycle. They proved that these graphs are 

graceful when k =2. Thereafter Punnim and Pabhapate proved the general case k ≥3. 

 
Theorem 12 [65, 88]: A cycle with a Pk-chord is graceful for all k ≥1. 
 

In 1990, Zhi-Zheng generalized the above theorem by proving the following result: 
 
Theorem 13 [104]: Apart from four exceptional cases, simple graphs consisting of three 

independent paths joining two vertices are graceful. 

 
Examples of graceful labeling of cycles with a P1-chord and P3-chord can be seen in 

Figure 16 : 

 
 
 
 
 
 
 
 
 
 
  
                             Figure 16: Examples of graceful labeling of cycles with Pk-chord 
 
Koh et al. [40, 64] also introduced the concept of a cycle with k-consecutive chords. A 

cycle with k-consecutive chords is a graph formed from a cycle by joining a cycle vertex 

v to k consecutive vertices of the cycle in such a way that v is not adjacent to any of 

these. Koh and others proved the following result about this kind of graph: 

 
Theorem 14 [61,64,65]: A  cycle  Cn with k-consecutive chords is graceful if     k =2, 3, 
n-3. 
 
A dragon Dn (m) is a graph obtained by joining the end point of path Pm to the cycle Cn. 

Truszcynski has proved the following theorem related to dragons: 

 
Theorem 15 [103]: The dragon Dn(m) is graceful for n ≥ 3, m ≥1. 
 
The following conjecture is also due to Truszcynski: 
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   C8 with twin chords D5 (3)

Conjecture 3 [103]: All graphs with a unique cycle are graceful except Cn, n ≡ 1,2 (mod 
4). 
 
Figure 17 shows two graceful graphs: a cycle C8 with twin chords (or 2-consecutive 

chords) and a dragon D5 (3): 

  

 

 

 

 

 

 

  
 
  
               Figure 17: Graceful labeling of a cycle with twin chords and a dragon  
 
Rosa [92] has defined a triangular snake (or Δ-snake) as a connected graph in which all 

blocks are triangles and the block-cut-point graph is a path. For definitions of block and 

block-cut-point graph see [28]. Let Δn-snake be a Δ snake with n blocks. Since a Δn-snake 

is an Eulerian graph,  according to theorem 2.1 it can only be graceful if  3n ≡ 0 or 3 

(mod 4) ⇒ n ≡ 0 or 1 (mod 4). Moulton verified that this result is also sufficient: 

 
Theorem 16 [85]: Every Δn-snake is graceful if and only for n ≡ 0 or 1 (mod 4).  
 
In order to deal with other cases, Moulton also defined a new concept as follows: 
 
Definition 11: An almost graceful labeling of a graph G = (V,E) with n =⏐E(G)⏐and    m 

= ⏐V(G)⏐ is a one-to-one mapping f of the vertex set V(G) into the set { 0,1,2, …,n-1}∪ 

{ n or n+1} such that the set of edge labels induced by the absolute value of the 

difference of the labels of the adjacent vertices is { 1,2,3, … ,n-1} ∪ {n or n+1 }. 

 
Notice that the above definition includes graceful labeling as special case. Next Moulton 

has strengthened the theorem 2.16 as follows: 

 
Theorem 17 [85]: Every Δn-snake for   n ≡ 2 or 3 (mod 4) is almost  graceful. 
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Δ5-snake Δ7-snake

 
The graceful labeling of Δ5-snake and an almost graceful labeling of Δ7-snake are shown 

in Figure 18: 

 
 
 
 
 
  
 
 Figure 18: Graceful labeling of Δ5-snake and an almost graceful labeling of   Δ7-snake 
 
Another class of cycle related graphs is that the disjoint union of cycles. Some recent 

results for this class of graphs will be summarized in next section. 
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4.  COMPLETE GRACEFUL GRAPHS 
 
In Figures 5 and 7  it was shown that K3 is graceful but K5 is not. The following result 

will answer the question of the gracefulness of the complete graphs: 

 
Theorem 18 [45]: Kn is graceful if and only if n ≤ 4. 
 
From the above theorem and the relation between graceful labeling and k-sequential 

labeling it follows that Kn is 1-sequential if and only if n ≤3. Furthermore Slater proved 

that for n ≥2, Kn is not k-sequential for all k ≥2. Therefore based on the relationship of   

k-sequential graphs we can conclude that no complete graph Kn is k-graceful for              

k ≥2, n ≥3. 

The complete bipartite graph Ka, b is the graph with m = a + b vertices and n = a × b 

edges, obtained by connecting each of  the "a” vertices with each of  the “b” vertices in 

all possible ways. For this class of graphs we have the following result proved by Rosa 

and Golomb: 

 
Theorem 19 [45,90]: The complete bipartite graph Kn1, n2 has an α-valuation for all n1, n2 

≥ 1. 

 
The graceful labeling of K3, 3 is shown in Figure 19: 
 
 
 
 
 
 
                                                                                                         
                                                Figure 19: A graceful labeling of K3,3 
 
By Kuratowski’s theorem [28] we know that a graph is nonplanar if and only if it 

contains a subgraph that is homomorphic to either K5 or K3,3. Since by considering 

theorems 18 and 19 K5 is not graceful but K3,3 is, we may conclude that planarity is 

unnecessary and insufficient for gracefulness. 

Since Kn1, n2 has an α-labeling it is  k-graceful too. The graph K1,n  is  known as star. 

Slater showed  the following result about stars: 
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Theorem 20 [98]: The star K1,n is k-sequential if and only if k divides n. 
 
Then Acharya proved that: 
 
Theorem 21 [15]: Kn,n is n-sequential for all n ≥1. 
 
In Figure 20, we have shown the 3-sequential labeling for a star K1,6 and a bipartite 

complete graph K3,3: 

 

 
                                                                                                                                                                          
   
  
  
                                      Figure 20: 3-sequential labeling for K3,3 and K1,6 
  

Windmill graphs m Kn
  (n ≥3) are the family of graphs consisting of m copies of Kn with a 

vertex in common. Let us call the case n = 3, the graph consisting of mK3’s with one 

vertex in common, a  Dutch m-windmill. The graceful labeling of this case was solved by 

Bermond et al. As follows: 

 
Theorem 22 [22]: The Dutch m-windmill is graceful if and only if m ≡ 0 or 1 (mod 4). 
 
For n = 4 we have mK4’s with exactly one vertex in common. It was proposed in 1976 to 

call this kind of graph a French m-windmill. The following conjecture is still an open 

problem although it is known to be true for 4 ≤ m ≤ 32 [22,56]: 

 
Conjecture 4 [22]: The French m-windmill is graceful if m ≥ 4. 
 
Figure 21 shows a graceful Dutch 5-windmill and a graceful French 4-windmill: 
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                                French 4-windmill                                    Dutch  5-windmill 
 
        Figure 21: Graceful labeling of French 4-windmill and Dutch 5-windmill 
 
Bermond et al. Also proved that a necessary condition for mKn to be graceful is that n ≤5. 

For n =5 the further necessary  condition is as follow: 

 
Theorem 23 [22]: If mK5 is graceful then m is even. 
 
We know that 2K5 and 4 K5 are not graceful but 6K5 and 8K5 are [64]. Let us now use the 

notation mKn
r for the graph consisting of m copies of Kn with a Kr in common. The 

following problem raised by Bermond: 

 
Problem 1 [21]: For which values of m, n and r is the graph mKn

r graceful ? 
 
In fact the case r = 1 discussed above is a special case of problem 1. The problem 1 has 

been solved only for the following minor cases when r > 1: 

 
1. mK3 

2 is graceful for all m ≥ 1 [62]. 

2. mK4 
2 is graceful for all m ≥ 1 [33]. 

3. mK4 
3 is graceful for all m ≥ 1 [62]. 

4. mKn 
r is graceful  only if m ≡ E i, j (mod 4) where n ≡i (mod 8), r ≡ j (mod 8) and Ei,j is 

an entry in the i th row and j th column of Table 2.1 [64] (Notation  ♣ indicates that 

there is no graceful labeling for that case.): 
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2  3K4

3

 

   i    /   j     0      1            2        3      4      5      6      7 
   1                     1,3  0,1,2,3       1       0,1      1,3     1,3      1     1,2 

   3     1        0,1       1,3      0,1,2,3       1      1,2     1,3     1,3 

   5     ♣       0,2       3     0,3       ♣      ♣       3     2,3 

   7     3     0,3       ♣     0,2       3     2,3       ♣       ♣ 
                  Table 1: Possible values of Ei,j in case 4 

 
 For example mK7

6, mK13
4 and mK15

10 are not graceful for all  m  ≥ 1 but 5K9
6 , 7K21

10  

and 8K23
17 are graceful. In Figure 22 the graceful labeling of 3K4

2 and 3K4
3 are shown: 

 
 
 
  
 

 

 

 

 

                                             
Figure 22: Graceful labeling of  3K4

2 and  3K4
3 
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  u1          u2 

  v1                  v2 

   v3                  v4 

(u2 ,v1 )

(u2 ,v3 )

(u2 ,v4 )

(u2 ,v2 )

(u1 ,v2 )

(u1 ,v1 )

(u1 ,v3 )(u1 ,v3 )

  Q1 = K2  Q2 = Q1 ⊗ K2 Q3 = Q2 ⊗ K2

5.  CARTESIAN PRODUCT GRACEFUL GRAPHS 
 
Definition 12: A Cartesian product of two subgraph G1 and G2 is the graph G1 ⊗ G2 

such that its vertex set is a Cartesian product of  V(G1) and V(G2) i.e. V(G1 ⊗ G2) = 

V(G1) ⊗ V(G2) = { (x,y) ⏐x ∈ V(G1), y ∈ V(G2) } and its edge set is defined as E (G1 ⊗ 

G2) =  { ((x1,x2),(y1,y2)) ⏐x1 = y1 and (x2,y2) ∈ E(G2) or x2 = y2 and (x1,y1) ∈ E(G1) }. 

 
For example the n-cube Qn is defined by Q1 = K2 and Qn+1 = Qn ⊗ K2. Q1, Q2 and Q3 are 

shown in Figure 23: 

 
 
 
 
 

        

  

 

 

 

 

 

 

                                         Figure 23: Construction of Q1, Q2 and Q3
         

            
Numerous variations of graphs that are Cartesian  products have been investigated for 

graceful labeling. Here we discuss the major results on this topic: 

 
Theorem 24 [69,83]:  Qn has an α-valuation for all n ≥ 1. 
 
Jungreis and Reid have investigated the existence of α-labeling for a variety of graphs of 

the form Pm ⊗ Pn , Cm ⊗ Pn , and Cm ⊗ Cn where Pn is a path on n vertices, and Cn is a 

cycle on n vertices (n > 3). Let us define graphs of the form Pm ⊗ Pn, Cm ⊗ Pn ,and          

Cm ⊗ Cn as planar grids,  prisms (or cylindrical grids), and torus grids respectively: 

 
 The progress to date [59] in planar grids, prisms and torus grids is summarized in Table 

2 below. The entry  YES (or NO) shows that the labeling is possible  (or impossible). The 

number in [] refers to the other references in addition to Jungreis and Reid; the question 
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mark ? means that the case is still an open problem. Note that all negative results for α-

valuations  follow  simply because that graph is not bipartite: 

         Name            Graph   Graceful  Labeling        α-labeling 
    Planar Grids          Pm ⊗ Pn            YES [16]        YES [16] 
    Prisms          C2m⊗P2n            YES [36]        YES   
          C4m⊗P2n+1            YES        YES 
          C2m+1⊗Pn YESfor2≤n≤12[36,56], 

Otherwise ?
        NO 

          C4m+2⊗P2n +1                ?            ? 
    Torus Grids          C4m ⊗ C2n            YES         YES 
          C4m ⊗ C2n+1               ?          NO 
          C2m+1 ⊗ C2n+1             NO          NO 
          C4m+2 ⊗ C2n+1               ?          NO 
          C4m+2 ⊗ C4n+2               ?            ? 

  Table 2: Recent results in labeling of different variations of grids 
 
Figure 24 gives α-labeling for planar grid P4 ⊗ P5 and graceful labeling for prism C5 ⊗ 

P2 and torus grids C4 ⊗ C6: 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              
                        Figure 24: Examples of labeling for Cartesian product graphs 
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A book Bn is the graph K1,n ⊗ K2 where K1,n is the star with n edges. The following 

theorem is due to Maheo: 

 
Theorem 25 [83]: The book B2n has an α-labeling for all n ≥ 1. 
 
Maheo also conjectured that the books B4n+1, or in the other words the union of (4n+1)C4 

having one edge in common, were also graceful. This conjecture was verified by 

Delorme: 

 
Theorem 26 [33]: The book B4n+1 is graceful for all n ≥ 1. 
 
Gallian and Jungreis [42] have generalized this class of graph by defining a stacked book 

SBn,m as a graph of the form K1,n ⊗ Pm. They proved the following theorem in this case: 

 
Theorem 27 [42]: The stacked book SB2n,m is graceful for all m, n ≥ 1. 
 
The graceful labeling of the stacked book SB2n+1,m is still an open problem. In Figure 25 

an α-labeling of the book B6 and a graceful labeling of the book B5 and stacked book 

SB2,3 are shown: 

 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             
 
                     Figure 25: Examples of graceful labeling and α-labeling of books and stacked books 
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Now let Qn(G) = G ⊗ K2 ⊗ K2 ⊗ … ⊗ K2 denote the graph of n-dimensional G-cube. 
                                                        (n-1) times 
Balakrishnan  and Kumar have proved that Qn (G) has an α-valuation for the special 

cases of G: 

 
Theorem 28 [19]:  Qn(G) has an α-labeling if G =K3,3 , K4,4 , or Pk for all n ≥ 1, k ≥ 2. 
 
In Figure 26, an α-labeling for Q2 (K3,3) is shown: 
  
 
 
 
 
 
 
                                       Figure 26: An α-valuation for Q2(K3,3)    
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6. TREE-RELATED  GRACEFUL GRAPHS   
 
The most well known problem in graph labeling  emanates from a   problem formulated 

by Ringle and a subsequent conjecture by Kotzig: 

 
Conjecture  5 [89,90]: All trees are graceful. 
 
Despite massive efforts, almost 100 papers, this conjecture has not been proved yet; 

however, many classes of trees have been shown to be graceful. Rosa [90] proved that 

not all trees admit an α-labeling although Kotzig [67] proved that almost all trees have an 

α-labeling. For instance the tree T in Figure 5  is one of  rare examples of trees with no 

α-labeling. 

From now on let us consider Pn as a snake  (or path) with n edges. A subgraph ZT is 

called the base of a tree T when ZT  is obtained from T by   omitting all its end vertices 

(vertices of degree one) and end edges. If T is not a snake but ZT is, then T is called a 

caterpillar. The following result is due to Rosa: 

 
Theorem 29 [90]: If T is a snake or caterpillar then T has an α-labeling. 
 
It is obvious that every snake or caterpillar is also k-graceful for all k ≥ 1. Examples of an 

α-labeling for a snake P5 and a caterpillar can be seen in Figure 27: 

 
 
 
  
  
 
                    Figure 27: Examples of α-labeling for a snake and a caterpillar     
 
If a tree T is not a caterpillar but ZT is, then T is called a lobster.  In 1979 Bermond [21] 

conjectured that lobsters are graceful. This conjecture is not proved yet but it may be 

easier to prove than the long intractable Ringle-Kotzig conjecture. Some special cases of 

Bermond ‘s conjecture were done by Huang and Rosa [55] and Ng [87]. 

A symmetrical tree is a tree  consisting of a generator node called  the root and  t levels of 

nodes in such a way that every level contains vertices of same degree. A special 

symmetrical tree is a complete k-ary tree in which the degree of the root is k and the 

     0       5        1        4      2         3 
  15        2       11 

13 1 10 9 5

      8        4        7  312  0
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degree of the other vertices except the last level’s vertices are k+1. The degree of the last 

level’s vertices are all one. Therefore a complete k-ary tree consists of  t levels of nodes 

has  kt-1 nodes in the last row. The following theorem was proved in this case: 

 
Theorem 30 [21]: A symmetrical tree is graceful. 
 
As a corollary of the theorem.31 we obtain that a complete k-ary tree is also graceful. A 

graceful labeling of binary tree is shown in Figure 28: 

  
  
 
 
 
 
 
 
 
 
 
                                      
                                      Figure 28: Graceful labeling of a binary tree 
     
As we mentioned there are only a few classes of trees without an α-labeling. The general 

nonexistence theorem for α-labeling of trees is as follows: 

 
Theorem 31 [57]: Let T = (V,E) be a tree all of whose vertices are of odd degree and m = 

⏐V(T⏐(thus m ≡ 0 (mod 2)). Let T* be a tree obtained from T by replacing every edge of 

T by a path of length two. If m ≡ 0 (mod 4) then the tree T* does not have an α-labeling. 

 
 

The minimal tree belonging to this class of  trees is shown  

in the Figure 29: 

 
                                                                              Figure 29: A class of trees with no α-labeling       
 
We know that every snake Pn has an α-valuation. Rosa proved the following theorem 

about labeling  snakes with an additional constraint: 

 
Theorem 32 [91]: Let v be an arbitrary vertex of the snake Pn. Then 

T T* 
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a) There exists a graceful labeling Ψ of  Pn such that Ψ(v) = 0. 

b) There exists an  α- labeling Ψ of  Pn such that Ψ(v) = 0 if and only if v is not the                               

central vertex of P4. 

 
Suppose that we read the labels of Pn from left to right. It is not very difficult to show that 

the snake Pn admits only one graceful labeling (or α-labeling) whose first label is zero.  

Frucht and Salinas [37] have described an algorithm to construct all of the graceful 

labelings of Pn whose first label is one. In order to estimate the number of possible 

graceful labeling or α-labeling of a snake, Abrham and Kotzig introduced the concept of 

an αk-valuation as follows: 

 
Definition 13 [8]: Let 0 ≤ k ≤ n and Pn be a snake with n edges and with the end vertices 

w and z. Let Ψ be an α-labeling of  Pn. Then Ψ will be called an αk-labeling (or αk-

valuation) of  Pn  if min (Ψ(w), Ψ(z)) = k. 

 
Abrham and Kotzig also presented some results concerning the number of αk-valuation 

of Pn as follows: 

 
Theorem 33 [8]: Let Nk(n) denote the number of αk-valuation of Pn, then 

1. N0(n) =1 for every n ≥ 1. 

2. N1(1) =0, N1(2) =N1(3) =1, N1(4) =0, N1(n2m ) ≥ (1/4) 2 [n/3] for all n ≥ 5. 

3. N2(n) =0 for n =1,2,3,6,8 and N2(n) =1 for n = 4,5,7 and N2(n) ≥ 2 [n/3] for n ≥ 9. 

 
It is shown by theorem 34 that there is an exponential lower bound for the number of α-

valuation of the snake Pn. Therefore,  the number of graceful valuation of the snake Pn 

grows at least exponentially with n. On the other hand, we also want to know in which 

situations Pn has an αk-valuation for all  k ≥ 0. Abrham proved the following theorem for 

all pairs n, k for which the snake Pn has an α-valuation: 

 
Theorem 34 [3]: (1) Let n be an odd integer: n =2m+1 ≥ 2k+1. Then Pn has an αk-

valuation Ψk with the end vertices w and z. This αk-valuation of Pn satisfies the condition 

⏐Ψ(z) - Ψ(w) ⏐= m+1. 
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(2)  Let n be an even integer: n =2m ≥ 2k+2. Then Pn has an αk-valuation Ψk with the end 

vertices w and z. This αk-valuation of Pn satisfies the condition Ψ(z) + Ψ(w) =m. 

For example in Table 2.3 an αk-valuation of P11 for k =0,1,2,3,4,5 and an αk-valuation of 

P10 for k =0,1,2 are shown: (An αk-valuation of Pn is described by a sequence of n+1 

nonnegative integers in parentheses giving the values of the successive vertices.) 

  
 
       k              αk-valuation of P11             αk-valuation of P10 
       0       (0,11,1,10,2,9,3,8,4,7,5,6)         (0,10,1,9,2,8,3,7,4,6,5) 
       1       (1,11,0,9,2,10,4,8,3,6,5,7)         (1,9,0,10,3,7,2,8,5,6,4) 
       2       (2,9,1,10,0,11,5,6,4,7,3,8)         (2,9,1,10,0,6,5,7,4,8,3) 
       3       (3,8,4,7,5,6,0,11,1,10,2,9)  
       4       (4,7,5,6,2,9,3,8,0,11,1,10)  
       5       (5,6,4,7,3,8,2,9,1,10,0,11)  

                               Table 3: αk-valuation for P10 and P11  
 
If we have an αk-valuation  Ψk of  P2m+1 then both the complementary valuation Ψk

⊕ and 

the inverse labeling Ψk
◊ are αm-k-valuations of  P2m+1. If  Ψk is an αk-valuation of  P2m 

then so is Ψk
◊ but if 2k ≤ m-1 then Ψk

⊕ is an αm+k-valuation of P2m ; if m ≤ k, 3m > 2k 

then Ψk
⊕ is an αk-m-valuation of P2m. Examples of these relationships are shown in Figure 

30: 

  
 
 
 
 
 
 
 
 
 
 
 
   
                
                Figure 30: Examples of relationship of αk-valuation of Ψ and Ψ⊕ and Ψ◊  

 

    2      8    1      9      0      5     4      6      3      7 
  Ψ: α2-valuation of  P9

    7      1    8      0      9      4     5      3      6      2 
 Ψ⊕: α2-valuation of  P9

    2      6    3      5      4      9     0      8      1      7 
 Ψ◊: α2-valuation of  P9

   1      8      0     6      2     7       4      5     3

  Ψ: α1-valuation of  P8

   7      0      8     2      6     1       4      3     5

Ψ⊕ : α5-valuation of  P8

   3      5     4      7      2     6       0     8     1

Ψ◊ : α1-valuation of  P8
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In a number of problems concerning the existence of α-valuations of snakes, the 

following approach, introduced by Abrham[13], is used: Two snakes with given α-

valuations are joined by means 

of an additional edge, the values 

of their vertices are suitably 

transformed, and the result is an 

α-valuation of a “longer” snake.                                                 

 

                                                                 Figure  31: Construction of a “large” snake 

 
For instance, in Figure 31 a construction of an α-valuation of P8 from the given    α-

valuations of P5 and P3 is shown where V(P5) = { a, b, c, g, h, i }; V(P3) = { d, e, f  }and  

V(P8) = { a, b, c, d, e, f, g, h, i }. 

This process can naturally be reversed. It is now time to ask if every α-valuation of 

“large” snake can be obtained in this way. Unfortunately the answer to this question is 

negative in general case.  

Now let Ψ be an α-valuation of a graph G and let γ  be the number from the definition of 

an α-valuation. Then the sets L(G), U(G) will be defined as follows: 

                                                L(G) = { v∈ V(G); Ψ(v) ≤ γ } 
                                                U(G) = V(G) - L(G) 
 
Definition 14: An α-valuation Ψ of the snake Pn is called separable if there exists an 

edge e ∈ E(Pn) called a separator such that the two graphs Q1, Q2 obtained from Pn by 

deleting e have the following properties: 

1. Q1 and Q2 are snakes (i.e. they each have at least two vertices). 

2. Each of the four sets Ψ(V(Qi) ∩ L(Pn)), Ψ(V(Qi) ∩  U(Pn)), i = 1,2 is either a 

consecutive integer interval or a one point set. 

For example consider an α-valuation of P8 in Figure 27. We know that L(P8) = { a, b, c, 

d, e}, U(P8) ={ f, g, h, i }. Let us assume that we delete the edge { e, h } and the graphs       

Q1 = P5 and Q2 = P3 obtained from P8. Then we will have: 

                  Ψ(V(Q1) ∩ L(P8)) = { 0,1,2 }                Ψ(V(Q1) ∩  U(P8)) = { 6,7,8 } 
                               Ψ(V(Q2) ∩ L(P8)) = { 3,4 }                  Ψ(V(Q2) ∩  U(P8)) =  { 5 } 

d:0      e:1

  f:2

 a:0   b:1      c:2

 i:5    h:4    g: 3

   P5    P3

 i: 8   h:7    g:6     f: 5

   P8

   a:0     b:1   c:2    d:3   e: 4
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    0      1     2       3     4      5    6      7

     14     13   12     11   10    9      8 

 Nonseparable α1-valuation of P14

   0       1     2      3    4 

   9      8     7      6     5 

 Nonseparable α1-valuation of P9

Therefore an α-valuation of  P8 in Figure 31 is separable. 

An α-valuation of Pn which is not separable will be called nonseparable. We should 

mention here that, if an αk-valuation of  Pn is separable, the deletion of a separator does 

not necessarily yield two αk-valuations of the resulting snakes. 

Abrham and Kotzig [13] considered the problem of the existence of nonseparable                

α-valuation for all snakes. As we have seen before, Pn has exactly one α0-valuation for 

any n ≥ 1. It is easy to verify that these α0-valuation are separable for n ≥ 3 and that each 

edge of Pn not incident with an end vertex is a separator. For α1-valuations, they have 

obtained the following result: 

 
Theorem 35 [13]:  The snake Pn does not have any nonseparable α1-valuation if and only 

if n ∈ {3,5} or n ≡ 1 (mod 3), n ≥ 4. Pn has exactly one nonseparable  α1-valuation if and 

only if n ≡ 0 (mod 3), n ≥ 6, or n ≡ 2 (mod 3), n ≠ 5. 

 
The nonseparable α1-valuation of P9 and P11 are shown in Figure 32: 
 
 
   

 

 

 

 

    
 
                       Figure 32: Nonseparable α1-valuations of P9 and P11 
 
 The problem of existence of nonseparable α2-valuations of Pn  has been solved by 

Abrham and Kotzig  but the number of such α2-valuations is still an open problem: 

 
Theorem 36 [13]: The snake Pn has a nonseparable α2-valuation if and only if n ≥ 9. 
 
Combining the Theorems 36 and 37,  we obtain: 

 
Theorem 37 [13]: The snake Pn has a nonseparable α-valuation if and only if either  n ∈ 

{ 1,2,6 } or n ≥ 8. 
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7. DISJOINT UNION OF GRACEFUL GRAPHS 
 

Definition 15: Given n disjoint graphs G1,G2, … , Gn such that they have no vertex or 

edge in common, the G1 ∪G2 ∪…  ∪ Gn is the graph G with the vertex set and edge set 

consisting of all those vertices and edges which are in G1 or G2 or … or Gn ; 

symbolically:          

                      V (G) = V(G1 ∪G2 ∪…  ∪ Gn) = V(G1) ∪ V(G2) ∪…  ∪ V(Gn) 

                       E (G) = E(G1 ∪G2 ∪…  ∪ Gn) = E(G1 ) ∪ E(G2) ∪ …  ∪ E(Gn) 

 
It has been shown in section 2.3.1. that a necessary condition for the existence of a 

graceful labeling of an Eulerian graph G is as follows: 

 
(NC1)    An Eulerian graph G is graceful ⇒ ⏐E(G) ⏐≡ 0 or 3 (mod 4) 
 
Furthermore, the existence of an α-valuation for an Eulerian graph can be obtained 

directly from (NC1) as follows: 

 
(NC2) An Eulerian graph G has an α-valuation   ⇒ ⏐E(G) ⏐≡ 0   (mod 4) 
 
We know that (NC1) and (NC2) are also sufficient if G is a cycle. In 1996, Abrham 

proved that (NC1) is also sufficient for 2-regular graphs with two components: 

 
Theorem 38  [6]: Let p, q ≥ 3. Then the graph Cp ∪ Cq has a graceful valuation if and 

only if p + q ≡ 0 or 3  (mod 4). Cp ∪ Cq has an α-valuation if and only if both p, q are 

even and p + q ≡ 0  (mod 4). 

 
According to Theorem 39 the graphs C4k ∪ C4m and  C4k+2 ∪ 

C4m+2 have an α-valuation for all k, m ≥ 1 and the graphs C4k ∪ 

C4m-1 , C4k+2 ∪ C4m+1, and  C4k+1 ∪ C4m+1 are only graceful for all 

k,m  ≥1. Kotzig [70] has shown that (NC1) is not sufficient  for 

all 2-regular graph with more than two components. The smallest 2-regular graphs which 

satisfies (NC1) and is not graceful is the graph 2C3 ∪ C5 i.e. the graph G with 11 edges 

and consisting of two triangle and a pentagon as Figure 33. 

 

Figure 33: 2C3 ∪ C5 
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Kotzig also proved that a graceful 2-regular graph can not have too many components of 

odd length, more exactly he proved the following necessary condition for the cases where 

we have odd cycles in 2-regular graphs: 

 
Theorem 39 [70]: Let w be the number of cycles of odd length in a 2-regular graph G. If 

G is graceful then ⏐V(G) ⏐ ≥ w (w+2). 

 
For instance, for the graph in Figure 33 we have w =3 and ⏐V(G)⏐= 11 and ⏐V(G)⏐< 

w(w+2) thus according to theorem 2.40 graph G is not graceful. 

Abrham has extended the number of nongraceful graphs which satisfy (NC1) by the 

following theorem: 

 

Theorem 40 [6]: For every p ≥ 11, p ≡ 0 or 3 (mod 4) there exists a 2-regular graph Gp 

which has p vertices,  satisfies (NC1) and is not graceful. 

 
A 2-regular graph G is called an rCn  graph  if G consists of r cycles and each of them is 

of length n. In other words, rCn is the disjoint union of r isomorphic components in such a 

way that each component is a cycle of length n. In an rCn graph, we have          

⏐V(rCn)⏐= ⏐E(rCn)⏐= r × n. 

Some important results on the gracefulness of this class of graphs are as follows mostly 

due to Abrham and Kotzig: 

 
1. 1Cn (i.e. a cycle with length n) is graceful if and only if n ≡ 0 or 3 (mod 4). 1Cn also 

has an α-valuation if and only if n ≡ 0 (mod 4) [90]. 

2. 2Cn is graceful and also has an α-valuation if and only if n ≡ 0 (mod 2) for n >2 [66]. 

Note: Results 1 and 2  entirely solve the existence of graceful valuation and also α-

valuation of rCn when  r = 1 or 2. 

3. 3C4n has an α-valuation for each n > 1. 3C4 is graceful but it has no α-valuation [66]. 

4. 3C4n+5 is graceful for every n ≥1 [70]. 

5. 4C4n has an α-valuation for all n ≥ 1 [74]. 

6. (r+1)C3 and rC5 have no graceful valuation for r ≥ 1.C3 has a graceful valuation [66]. 

7. rC4 has an α-valuation for at least 1 ≤ r ≤10, r ≠ 3 [70]. 
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8. (2n-1)C2n+1 is not graceful for all n ≥ 1 [70]. 

9. r2C4 and (r + r2 )C4 have an α-valuation for all r ≥ 1 [11]. 

10. If rC4 has an α-valuation, then (4r+1)C4 , (5r+1)C4  and (9r+2)C4 also have an α-

valuation [10]. 

According to results 7,9 and 10 we can conjecture that rC4 has an α-valuation for all r ≥1, 

r ≠ 3. This conjecture was an open problem for years until Abrham and Kotzig proved it  

in 1994: 

 
Theorem 41 [12]: The graph rC4 has an α-valuation for all r ≥ 1, r ≠ 3. 
 
For example in Figure 34 an α-valuation for 6C4 has been shown   : 
 
 
  
 
 
 
 
 
                                         Figure 34: An α-valuation of 6C4 
 
Abrham proved the following theorem on 2-regular bipartite graphs to obtain certain 

rules for extensions of α-valuation generalizing those given in result 10 above: 

 
Theorem 42 [2]: Let H(4s) be a 2-regular bipartite graph on 4s vertices such that the 

graph rH(4s) has an α-valuation where r, s are positive integers. Then the following 

graphs also have  α-valuations: 

1. 4rs H(4s) ∪ C4s 

2. [(4s+1)r +1] H(4s) 

3. [(8s+1)r+2] H(4s)   if 2H(4s) has an α-valuation 

 
Furthermore if we replace any copy of  rH(4s) by another 2-regular bipartite graph on 4rs 

vertices, which has an α-valuation, the resulting graphs will again have an α-valuations. 

 
For instance suppose H(4s) = C8 i.e. s = 2. We know that C8 has an α-valuation i.e. r =1 

thus 8C8 ∪ C8 or 9C8 has an α-valuation  too. Moreover  the graphs 10C8 and 19C8 have 

  0   24

  23   2 

  1   21

  16   11

  3   22

  20   4

  5   19

  18   7

  8   17

  15   9

  10   14

  13   12
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an α-valuation according to the parts 2 and 3 of theorem 2.42 and the fact that 2C8 has an 

α-valuation. Any C8 in these graphs can be replaced by an α-valuation of  2C4 and the 

resulting graphs will again have an α-valuation. This leads to the following statements: 

 .The graph kC8 ∪ 2(9-k)C4   has an α-valuation for  0 ≤ k ≤ 9 . أ

 .The graph kC8 ∪ 2(10-k)C4 has an α-valuation for  0 ≤ k ≤ 10 . ب

 .The graph kC8 ∪ 2(19-k)C4 has an α-valuation for  0 ≤ k ≤ 19 . ت

 
In fact if we put H(4s) =C4n and r =1 in theorem 2.42 since we know that C4n has an α-

valuation for n ≥ 1 we will conclude the following corollary: 

 
Corollary 1: (4n+1)C4n , (4n+2)C4n and (8n+3)C4n have an α-valuations. 
 
One of the interesting properties of a graceful labeling of a 2-regular graph is this: If G is 

a 2-regular graph with a graceful labeling Ψ then there exists a unique integer x (0 ≤ x ≤ 

⏐V(G)⏐) such that Ψ(v) ≠ x for all v ∈ V(G). If Ψ is an α-valuation of G and ⏐V(G)⏐= 

4k then either x = k or x =3k [66]. This number x will be referred to as the missing value.  

For instance the graceful labeling and α-labeling of C8 are shown in the Figure 35. As we 

can see the missing values of these labelings are x1 = 4 and x2 = 2 respectively: 

 
 
 
 
 
 
 
 
 
 
 
                            Figure 35: Missing values in graceful labeling of C8 
 
The following results related to missing value are due to Abrham and Kotzig: 
 
Theorem 43 [7]: Let G be a 2-regular graph on n vertices possessing a graceful labeling 

Ψ. Then the missing value x has the following properties: 

     0

 1 

 8

 7 

 3  6

     5

       4

α- labeling of C8
x2 = 2 

     0
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 8
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 6  2 

     7

       1

Graceful labeling of C8 
x1 = 4 
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1. If n = 4k then k ≤ x ≤ 3k. Moreover, Ψ is an α-valuation of G if and only if either       

x = k or x = 3k. If Ψ is an α-valuation with x = k (or x = 3k), then the complementary 

valuation Ψ⊕ has an α-valuation with x⊕ = 3k (or x⊕ = k). 

2. If  n = 4k-1 then k ≤ x ≤ 3k-1. 

A different kind of disjoint union of graphs have been considered by Frucht and Salinas: 

The union of a snake and a square as follow: 

 
Theorem 44 [37]: If n ≥ 4 then the graph C4 ∪ Pn is graceful. 
 
In Figure 36 the graceful union of C4 ∪ P13 is shown: 
 
 
 
 
   
                              
                                           Figure 36: Graceful labeling of C4 ∪ P13 
 
Kotzig and Turgeon have studied the graceful valuation of r-regular graphs consisting of 

m  complete graphs. They proved that  

 
Theorem 45 [72]: An r-regular graph consisting of m complete graphs Kr+1 is graceful if 

and only if  m = 1 and r < 4.  

 
Graceful valuations of K1, K2, K3 and K4 are shown in Figure 37: 
 
 
 
 
 
                             Figure 37: Graceful labeling of K1, K2, K3 and K4 
 
 
 
 
 
 
 
 
 

  0   1  0

 0

  3   2

  1

 4  6
  0

 K1  K2  K3  K4

   16    3     12     6      9     8    10    5    13   2   14    4      11   7
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 15  1
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8.  APPLICATIONS OF GRACEFUL GRAPH   
 
Labeled graphs serve as useful tools for a broad range of applications. Bloom and 

Golomb [26,27] in two excellent surveys have presented systematically an application of 

graph labeling in many research fields such as coding theory problems, X-ray 

crystallographic analysis, communication network design, optimal circuit layout, integral 

voltage generator, and additive number theory. In this section we restrict our discussion 

to applications of graceful labeling and its variations in decomposition of graphs, perfect 

system of difference sets, and integer sequences such as the Skolem sequence: 

8.1  GRAPH DECOMPOSITION  
 
Definition 16 [29]: A decomposition of a graph G is a family H = (H1,H2, … , Hn) of 

subgraphs of G such that  each edge of G is contained in exactly one member of H. In 

fact G is the edge disjoint union of its subgraphs Hi  

where i = 1,2, … ,n   such that 

E(Hi) ∩ E(Hj) = 0       for i ≠ j ;                        E(G) 

= ∪ E(Hi)        i = 1,2, … ,n ;                           V(G) 

= ∪ V(Hi)       i = 1,2, … ,n. 

 
For example the graph G shown in Figure 38 has a decomposition H = (H1, H2, H3) into 

three K3: E(H1) = {(u1, u2), (u2, u6), (u1, u6), E(H2) = {(u2, u3), (u3, u4), (u2, u4), E(H3) = 

{(u1, u4), (u1, u6)} and V(H1) = (u1, u2, u6 ), V(H2) = (u2, u3, u4 ), V(H3) = (u4, u5, u6 ). 

 
Definition 17: Let two graphs G and G′ be given. A G-decomposition of a graph G′ is a 

decomposition of G into subgraphs isomorphic to G. In other words, each member Hi in 

definition 2.16 must be isomorphic to G. We write G⏐G′ whenever a G-decomposition of 

G′ exists. 

The decomposition of graph G in Figure 38 is a K3-decomposition, i.e., K3⏐G. 
 

    u1  

   u4    u3 

 u2 

  u5  

    u6

Figure 38 : Decomposition of a graph 
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Definition 18: A decomposition H of a graph G into subgraphs H1,H2, … , Hn is said to 

be cyclic if there exists an isomorphism ƒ of G which induces a cyclic permutation fv of 

the set V(G) and satisfies the following implication: if Hi ∈ H then  f (Hi) ∈ H for  i = 

1,2, … ,n.  Here f (Hi) is the subgraph of G with vertex set  {f (u); u ∈ V(Hi)} and edge-

set     { (f (u),  f (v) );  e = ( u, v )∈ E(Hi) }. 

 
For instance the graph G shown in Figure 39 has a cyclic 

decomposition with the following permutation: 

                            u1  u2  u3  u4  u5  u6     

                            u2  u3  u4  u5  u6  u1        

The permutation f v assigns to an element in the first line 

the element standing below it. 

 

The following theorem explains the connection between an α-valuation and cyclic 

decomposition of the complete graph into isomorphic subgraphs. This theorem is due to 

Rosa: 

 
Theorem 46 [90]: If a graph G with n edges has an α-valuation then, for every positive 

integer c, there exists a cyclic decomposition of the complete graph K2cn+1 into subgraphs 

isomorphic to G. 

 
In other words if G with n edges has an α-valuation then G⏐K2nc+1 for c ≥1. 

The previous theorems and the results about α-valuation combine to give the following 

corollary: 

 
Corollary 2: In the cases listed below there exists a cyclic G-decomposition of Kv: 

1. G = C4n            and  v ≡ 1 (mod 8n) 

2. G = Pn             and  v ≡ 1 (mod 2n) 

3. G = Kn1, n2        and  v ≡ 1 (mod 2n1n2) 

4. G = Qn             and  v ≡ 1 (mod n2n) 

5. G = B2n            and  v ≡ 1 (mod 12n+2) 

6. G = Qn(K3,3)       and  v ≡ 1 (mod 3(n+2)2n) 

 

Figure 39 : Cyclic decomposition     
of a  graph 
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 u2  
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) f v = (
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7. G = Qn(K4,4)       and  v ≡ 1 (mod (n+3)2n+2) 

8. G = Qn(Pk)         and  v ≡ 1 (mod [(n+1)k-2]2n-1). 

 
 
In Figure 40 a cyclic C4-decomposition of K9 is shown: 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
             
 
 
 
 
                                                 Figure 40: The cyclic C4 ⏐ K9 
 
To obtain the cyclic C4 ⏐K9, the vertices of K9 are labeled with the integers 0,1,2, … ,8. 

Then consider an α-valuation of C4. The vertices of C4 i.e. v1, v2, v3, v4 in this α-

valuation are labeled as Ψ(v1) =0, Ψ(v2) =4, Ψ(v3) =1 and Ψ(v4) =2. The rest of the 

cycles C4 are labeled as follow:  the jth cycle of C4 has the vertices of K9 labeled  Ψ(vi) + 

j-1 (mod 9) ;  i  =1,2,3,4 and j = 2,3, … ,9. 

 

8.2 PERFECT SYSTEM OF DIFFERENCE SETS 
 
Definition 19: Let c, m, p1, p2, … , pm be positive integers, and Si ={ X0i < X1i < … < 

Xpi,i }; i = 1,2, … ,m be a sequence of integers and Di = { Xji - Xki , 0 ≤ k < j ≤ pi }, i = 

1,2, … ,m be their difference sets. Then we say that the system { D1, D2, … ,Dm } is a 

perfect system of difference sets (PSDS) starting with c if 
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m                                                                      m

∪ Di = {c, c+1, c+2, … , c-1 + ∑   (1/2)(pi (pi +1) } 
i=1                                                                    i = 1 

43

  0

  

  
Each set Di is called a component of  PSDS  { D1, D2, … , Dm }. The size of Di is pi. A 

PSDS is called regular if all its components are of the same size i.e. p1 = p2 = … = pm =  

n-1. Traditionally a regular PSDS with m components of size n-1 starting at c is referred 

to as (m, n, c). 

 
If we put  Xj+k-1, i - Xj-1, i = dji (k), j = 1, 2, … , pi +1-k , k = 1, 2, … , pi , i = 1, 2, … , m, 

then the elements of Di can be represented in the form of a difference triangle: 

 
                                                                  d1i (pi) 
                                          …………………………………………….. 
                               ………………………………………………………….. 
             d1i (2)    d2i (2)    ……………………………………………  dpi-2,i (2)   dpi-1,i (2)  
    d1i (1)     d2i (1)   d3i (1)    ………………………………… dpi-2,i (1)  dpi-1,i (1)    dpi,i (1)  
X0i                X1i         X2i     ………………………………………………….   Xpi -1,i            Xpi ,i  
 
Biraud and Blum and Ribes [5] were probably the first ones to observe a relationship 

between graceful labeling of graphs and PSDS. The regular PSDS (1,n,1) is a PSDS with 

one component starting with 1. There exists only two regular PSDS (1,n,1) [5]. They are  

                                                                                        6 
                                          3                                         4      5 
                                       1     2                                1     3      2 
                                    ------------                          ----------------- 
                             S:   0     1     3                    S: 0    1      4      6 
 
The mirror images of the above PSDS  are also PSDS. 

As a matter of fact a PSDS (1,n,1) is related to the graceful labeling of Kn. For instance 

(1,3,1) and (1,4,1) are the graceful labeling of K3 and K4 respectively: 

 
 
  
 
 
                                     

 
                                             Figure 41: Graceful labeling of K3 and K4 
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 In general the existence of a PSDS (m,n,1) corresponds to a graceful labeling of mKn’s 

having exactly one vertex in common. In section 2.2.2 we have defined this family of 

graphs as “ windmill graphs”. Therefore the PSDS of cases (m,3,1) and (m,4,1) reduce to 

the problem of graceful labeling of Dutch m-windmill and French m-windmill which was 

discussed in section 2.2.2. Thus there exists a PSDS (m,3,1) if and only if m ≡ 0 or 1 

(mod 4). A PSDS starting with c describes a c-graceful labeling of a graph which could 

be  decomposed into complete subgraphs. Since there exists no (1,n,c) with c > 1 no 

complete graph is c-graceful for c >1 (the same as the result obtained in section 2.2.2). 

The following regular perfect system (3,3,2)   

 

                         8                              9                                 10 
                   2        6                     4       5                         3        7 
             -----------------         -------------------            ------------------ 
         S1: 0       2       8     S2:   0      4       9           S3: 0      3      10 
 
implies that the Dutch 3-windmill below is 2-graceful  :    
  
 
 
 
 
 
 
                                  Figure 42: The graceful labeling of Dutch 3-windmill   
 
Note that the same PSDS could generate the k-graceful labeling for different kinds of 

graphs. For example if we choose the same PSDS as the above but with a different S2 we 

will have  

                         8                              9                                 10 
                   2        6                     4       5                         3        7 
             -----------------         -------------------            ------------------ 
         S1: 0       2       8     S2:   1      5       10           S3: 0      3      10 
 
We will find the 2-graceful labeling of Δ3-snake as Figure 43: 
 
  

 

 

 

                                         Figure 43: 3-graceful valuation of Δ3-snake 
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As we have seen before, Kotzig and Turgeon [72] have proved that graph G  consisting 

of m components where each component is Kr is graceful if and only if m = 1 and r = 2 or 

3. The PSDS given below shows that this statement does not hold if the components of G 

are complete graphs but G is not regular: 

 
        
 
                         16                                                                
                   14        15                                                              
              10        13       6                                 11                                 12 
          1         9         4      2                         3         8                         5        2 
        -----------------------------                 -------------------            ----------------  
 S1: 0     1         10      14    16          S2: 2      5       13           S3: 3      8      15 
 
The corresponding graph to this PSDS is graceful labeling of K5 ∪ 2K3 as follows: 
   
 
 
 
 
 
 
 
 
                               Figure 44: Graceful labeling of K5 ∪ 2K3  
 

8.3  INTEGER SEQUENCES  
 
A graceful graph or its variations can be represented by a sequence of positive integers. 

Sheppard [94]  was the first one to establish a relation between the integer sequences and  

graceful labelings  of graphs. 

 
Definition 20 [94]: For a positive integer m, the sequence of integers (j1, j2, j3, … ,jm) 

denoted by ( ji ), is a labeling sequence if and only if  0 ≤ ji ≤ m-i for all i ∈ [1,m]. 

 
For instance for m = 5, the sequences (4,3,2,1,0), (0,2,1,1,0), and (1,3,0,1,0) are labeling 

sequences. 
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Theorem 47 [94]: There is a one-to-one correspondence between graceful graphs with m 

edges and labeling sequences (ji) of m terms. 

 
Let G be a graph with m edges and a graceful labeling Ψ. Then  let ji be the smaller of the 

end labels of the edge  labeled i. In other words  ji = min (Ψ(u), Ψ(v))   i ∈ [1,m], u,v are 

the ends of the edge labeled i. Conversely, given a labeling sequence (ji) with m terms, 

the graceful labeling can constructed as follows: Arbitrarily assign the m+1 labels of 

[0,m] to m+1 isolated vertices. For each ji ,  join the vertices with the labels ji and ji + i. 

 
Figure 45 gives all the graceful labelings of a graph with 3 edges, paired with the   

corresponding  labeling sequence: 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                           
                                        Figure 45: All graceful graphs with 3 edges 
 
Since there are m! labeling sequences with m terms, there are m! graceful graphs with m 

edges. Some of these graceful graphs have an α-labeling too. If G is a graph with an α-

labeling, the corresponding labeling sequence is called a balanced sequence and has the 

following property: 

 
Theorem 48 [94]: The labeling sequence (ji) with m terms is a balanced sequence if and 

only if the sequence (ji*) defined by  ji* = j1 - jm-i+1 for all i ∈ [1,m] is a labeling 

sequence. 
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G1: ( 2,1,0 ) G2: ( 2,0,0 ) G3: ( 1,1,0 )

G4: ( 1,0,0 ) G5: ( 0,0,0 ) G6: ( 0,1,0 )



Introduction to Graceful Graphs                                                                                                             48 

    

 
For example in Figure 45 the labeling sequence of G2  is (jG2) = (2,0,0). Since              

(jG2*) = (2,2,0) is not a labeling sequence then (jG2) is not a balanced labeling sequence 

and G2 has no α-labeling. 

By using the concept of balanced sequence, Sheppard could successfully calculate the 

number of graphs having an α-labeling as follows: 

 
Theorem 49 [94]: The number of balanced sequences with m terms is  
 
(1)  
  
 
(2) 
 
 
The number of graphs having graceful and α-labeling for graphs with m edges and their 

ratios in compare to each other  are shown in Table 2.4. As we can see when the number 

of edges grows, the fraction of graphs having an α-labeling among the graceful graphs 

approaches near zero: 

  m             # of graceful graphs 
                  (1) 

# of graphs having an α-labeling 
                     (2) 

ratio(2) / (1) 

   1                    1                       1         1 
   2                    2                       2         1 
   3                    6                       4       0.68 
   4                   24                      10       0.42 
   5                 120                      30       0.25 
  10             3628800                   53578       0.015 
  15            1.3 * 1012                 8.9 * 108    6.8 * 10-4 
  20            2.4 * 1018                 6.9 * 1013    2.8 * 10-5 
  30            2.6 * 1032                 1.1 * 1025    4.2 * 10-8 

            Table 4: The number of graphs having graceful and α-labeling 

Abrham [1] has studied the relation of graceful labeling of certain regular graphs and 

another integer sequence referred to as a Skolem sequence: 

 
Definition 21 [96]:  A  Skolem sequence of order n  is  a sequence S = { S1, S2, … , S2n} 

of positive integers with the following properties: 

1. For any k ∈ { 1, 2, … , n } there exists precisely two subscripts i (k), j (k) such that 

Si(k) = Sj (k) = k. 

      (1/ 2)m  

 2 ∑     ( j ! ) 2 j m-2j                                                                                 if m is even 
             j = 1

       (1/ 2)(m-1)  

 2 ∑  [( j ! ) 2 j m-2j] + [((1/2) (m+1)) ! ((1/2)(m-1)) !]                          if m is odd 
       j = 1
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2. The two subscripts satisfy the condition ⏐i (k) - j (k) ⏐ = k, k = 1,2, … ,m. 

 
For instance the set  S = {1, 1, 3, 4, 5, 3, 2, 4, 2, 5} is a Skolem sequence of order 5 

because S1 = S2 = 1, S7 = S9 = 2, S3 = S6 = 3, S4 = S8 = 4, S5 = S10 = 5.   

 
Skolem proved the following theorem: 
 
Theorem 50 [96]: A Skolem sequence of order n exists if and only if n ≡ 0 or 1              

(mod 4). 

 
Now suppose that G is a graceful 2-regular graph on n vertices. We want to assign an 

integer sequence S(G) = { a0, a1, … , an, b0, b1, … ,bn }to this graceful labeling. Abrham 

[1] developed the following algorithm for constructing S(G): 

 
                                                   Algorithm for constructing S(G) 
                                                  ---------------------------------------- 
 
Note: We assume that the edges of G will be numbered  e1, e2, … , en in such a way that 

the value of  ek in the graceful labeling is k, k = 1, 2, 3, … ,n.  

At a given stage of construction of the terms of S(G) we say that a term (either ai or bi) of 

S(G) is free if it has not been assigned to a value yet. 

 
 .Select an arbitrary  cycle  C of G and a direction in which we will move around C . أ

 .Choose an arbitrarily edge ek of C with end vertices having the values i, i+k . ب

 Choose one of the pairs (ai, ai+k),(bi, bi+k),(ai, bi+k),(ai+k, bi)  and assign the value k to . ت

both of its terms. 

 Move to the edge adjacent to ek at its end point in the direction chosen. Denote that as . ث

er. 

 If we consider the edge er with the end vertices having the values p, p+r ; we select . ج

one of the pairs (ap, ap+r), (bp, bp+r),(ap+r , bp), (ap, bp+r) which has two free terms (such 

a choice is possible according to theorem in [1] ) and assign the value r to both terms 

in this pairs. 

 .Continue with all edges of the cycle C that have not been used . ح
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 8

 If G has only one cycle, at the end we will be left with one pair (ax, bx) containing  . خ

two free terms; we will then put  ax = bx =n+1. If G has more than one cycle we take 

another cycle of G and repeat the procedure, until we end with only one free pair     

(ax, bx); then we put ax = bx =n+1. 

Example 2.1: The graph G and its graceful labeling are shown in Figure 46. We want to 

construct S(G) by choosing a clockwise direction: 

 
 
  
 
 
 
 
                                  Figure 46: Graceful labeling of graph G = C8 
 
By applying the above algorithm to the graph G in Figure 46, we will obtain the 

following result as Table 2.5: 

stage elected  edge              Possible pairs with two free terms     elected  terms 
  0      4         (a3,a7), (a3,b7), (b3,a7), (b3,b7)      b3 = b7 = 4 
  1      6                     (a1,a7), (a7,b1)      a1 = a7 = 6 
  2      7                     (b1,b8), (a8,b1)      b1 = b8 = 7 
  3      8                     (a0,a8), (a8,b0)      a0 = a8 = 8 
  4      5                     (b0,b5), (a5,b0)      b0 = b5 = 5 
  5      1                     (a4,a5), (a5,b4)      a4 = a5 = 1 
  6      2                     (b4,b6), (a6,b4)      b4 = b6 = 2 
  7      3                     (a3,a6), (a6,b3)      a3 = a6 = 3 

          Table 2.5: Construction of  S(G) for graph G in Figure 46 
 
Finally the pair (a2,b2) is left. Thus a2 = b2 = n+1 =9 and S(G) has the following 

sequence: 

S(G) = (a0, a1, … , a8, b0, b1, … , b8) = (8, 6, 9, 3, 1, 1, 3, 6, 8, 5, 7, 9, 4, 2, 5, 2, 4, 7). 

The sequence S(G) constructed above does not have to be a Skolem sequence, but in two 

special cases it generates a Skolem sequence of order n+1 by a slight modification of the  

above algorithm [1]: 

 
1. If G is a 2-regular graceful graph on n vertices, consisting only of cycles of even 

length. Then n ≡ 0 (mod 4). 
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2. If G  is a 2-regular graph on n ≡ 3 (mod 4) vertices with a single component of odd 

length. 

Conversely, sometimes a Skolem sequence can generate a graceful labeling or α-labeling 

of a 2-regular graph. The special cases are as follows [1]: 

 
i) Let S(G) = { S1, S2, … , S2n+2 } be a Skolem sequence of order n+1. Furthermore if    

Si = Si+k = k for 1 ≤ k ≤ n and either i + k ≤ n+1 or i ≥ n+2; then S(G) generates a 

graceful labeling of a 2-regular graph G on n ≡ 0 (mod 4) vertices consisting one or 

more cycles of even length. 

 
ii) Let S(G) = { S1, S2, … , S2n+2 } be a Skolem sequence of order n+1, n ≡ 0 (mod 4)  

and  k ∈ { 1,2, … ,n } and Si = Si+k = k :   

      1. For i + k ≤ n+1, if i ≤ (n/2)+1 then (n/2) +1 < i + k ≤ n+1. For i ≥ n+2, if                    

n+2 ≤ i ≤ (3n/2) +2 then (3n/2) < i + k ≤ 2n+2. In this case S(G) generates an        

α-labeling of   2-regular graph G on n ≡ 0 (mod 4) vertices consisting one or more 

cycles of even length with x = (n/4), γ = (n/2).                                     

      2. For i + k ≤ n+1, if i ≤ (n/2)  then  (n/2)  < i + k ≤ n+1. For n+2 ≤ i, if  n+2 ≤ i ≤ 

(3n/2) + 1 then  (3n/2)+1 < i + k ≤ 2n+2. In this case  S(G) generates an α-labeling 

of 2-regular graph G on n ≡ 0 (mod 4) vertices consisting one or more cycles of 

even length with x = (3n/4), γ = (n/2)-1.   

 
iii)  Let S(G) = { S1, S2, … , S2n+2 } be a Skolem sequence of order n+1, n ≡ 3 (mod 4) 

with the following properties: 

      (1) If 1 ≤ k ≤ n, k ≠ (n+1)/2, and if Si = Si+k = k then either i ≥ n+2 or i+k ≤ n+1. 

      (2) If Si = Si+ (n+1)/2 = (n+1)/2 then  i ≤ n+1, i+(n+1)/2 ≥ n+2. 

(3)  If Si = Si+n+1 = n+1 then i ≤ n+1, i+n+1 ≥ n+2.    

      In this case  S(G) generates a graceful labeling of 2-regular graph G on n ≡ 3 (mod 4)                                    

vertices with a single component of odd length containing e(n+1)/2.   
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Example 2.2: S(G1) = (8, 5, 9, 4, 1, 1, 5, 4, 8, 6, 7, 9, 2, 3, 2, 

6, 3, 7) is a Skolem sequence of order 9. S(G1) satisfies the 

conditions of  part b.1, therefore S(G1) generates an α-

valuation of 2-regular graph on             eight vertices. 

In fact S(G) = (a0,a1, … ,a8, b0,b1, … ,b8) = (8, 5, 9, 4,1, 1, 5, 

4, 8, 6, 7, 9, 2, 3, 2, 6, 3, 7) is an α-labeling of 2C4 as we can 

see in Figure 47.  

 
S(G2) = (11, 9, 1, 1, 3, 4, 12, 3, 6, 4, 9, 11, 8, 10, 6, 7, 5, 2, 12, 2, 8, 5, 17, 10) satisfies the 

properties c, then S(G2) generates a graceful valuation of 2-regular graph C7 ∪ C4 as 

follows:  

 

 
 
 
 
 
 
Example 3:   The Skolem sequences of order n + 1 = 9 are easy to enumerate. The 

enumeration of all Skolem sequence of order 9 yields six α-valuations of C8, eighteen 

graceful labelings of C8 which are not α-valuations, two α-valuations of the 2-regular 

graph consisting of two 4-cycles, and finally four graceful labeling of this graph which 

are not α-valuations. 

 
Unfortunately the correspondence between graceful labeling of certain 2-regular graphs 

and certain Skolem sequence is not one-to-one: A change in orientation of a cycle of the 

graph changes the resulting Skolem sequence. Nevertheless, this correspondence  might 

in future help to find estimates for the number of graceful numberings of 2-regular 

graphs, perhaps along the lines used in [4].  

 

8.4  RADAR PULSE CODES 
 
The problem of graceful complete graph Km is equivalent to the problem of putting            

m marks on the ruler (always including the ruler’s two ends as marks) so that every 

  0   8 

  1   6

  3   7 

  4   5  

Figure 47 : An α-valuation of 2C4

4              7           3         2        8        0 

9              5           10            1             11 

        Figure 48: Graceful labeling  C4 ∪ C7
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distance between a pair of marks is a distinct integer. Figure 49  represents the ruler 

model  of  K4 with the vertex values 0, 1, 4 and 6. It can be imagined as a ruler of length 

6 with four slots (0, 1, 4, 6) that can be used to measure any integral distance less than or 

equal to 6. 

  
 
             
                               Figure 49: Ruler model of graceful graph K4                        
 
By this process the (   ) distances which the ruler can measure are numerically equal to 

the edge numbers of  Km. It has been previously shown  that no complete graph with 

more than four vertices can be gracefully numbered. Golomb [45] published a 

generalization of this problem as follow: 

 
Problem 2: Let us assign m distinct non-negative integers to the m vertices of graph         

G = (V, E), n = ⏐E(G)⏐ and m = ⏐V(G)⏐ in such a way that the n edges receive n distinct 

positive integers by the assignment of ⏐ai - aj ⏐to a given edge, where ai  and aj are the 

numbers assigned to its end points. Moreover, we wish to minimize the value of the 

largest integer assigned to any vertex of G. We call this minimized value θ(G). 

The problem is to assign integers to the vertices of G so as to achieve θ(G). 

 
It is clear that θ (G) ≥ n. A graph for which θ(G) = n  is  a graceful graph. A survey of 

results on this problems can be found in [26, 29, 45, 58]. Here we concentrate on the case 

of G = Km. In Figure 50 a solution of this problem for G = K5 has been shown. As we can 

see in this case θ (K5) = 11 and no edge is numbered 6: 

 

 

 

 

 

 

 

m
2

0                 1                         4                       6
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                                 Figure 50 : Numbering of K5 with θ (K5) = 11 
 
It follows that rulers corresponding to numberings of Km, m ≥ 5, must be longer than        

(     )  

if want that no measurements are repeated. Gardner [44] called these m-mark, non-

redundant, minimum-length rulers as Golomb Rulers. Golomb rulers with fewer than 10 

marks have been shown in Table 6: 

 
 m   (    )  θ(Km)                                       Marks  at 

  2     1    1                                                       0, 1 
  3     3    3                                                    0, 1, 3 
  4     6     6                                                  0, 1, 4, 6 
  5    10   11                               0, 1, 4, 9, 11  or    0, 2, 7, 8, 11   
  6    15   17                         0, 1, 4, 10, 12, 17  or  0, 1 ,4, 10, 15, 17    

                       or  0, 1, 8, 11, 13, 17 or 0, 1, 8, 12, 14, 17 
  7    21   25                    0, 1, 4, 10, 18, 23, 25  or  0, 1, 7, 11, 20, 23, 25   

              or  0, 1, 11, 16, 19, 23, 25   or  0, 2, 3, 10, 16, 21, 25 
  8    28   34                                  0, 1, 4, 9, 15, 22, 32, 34 
  9    36   44                              0, 1, 5, 12, 25, 27, 35, 41, 44   
10    45   55                            0, 1, 6, 10, 23, 26, 34, 41, 53, 55 

                                  Table 6: Golomb rulers for 2 ≤ m ≤ 10 
  
Radar distance ranging is accomplished by transmitting a train of pulse and waiting for its 

return. Because of the dispersion of energy occurring both during transmission of the 

signal and its scattering during reflection, only a small fraction of the transmitted energy 

ever returns to the detector. It is desirable to have a very narrow transmitted radar pulse 

whose instant of return can accurately determined.  

If a series of m radar “pulses“ are transmitted  corresponding to marks on a  non-

redundant ruler, it is easy to determine precisely when the pulse train returns.  

m
2

m
2
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0 1 4 9 11

0 1 4 9 11

0 1 4 9 11

0 1 4 9 11

0 1 4 9 11

A signal of  relative amplitude m will be generated when the returning signal precisely 

align with an array of detectors  distributed like a template of a transmitted pulse train.  

At any other time, no more than one pulse can excite any detector in the template. 

Moreover, if the temporal positions of the pulses occur at marks positions on a Golomb 

Ruler, the overall duration of the  train will be minimized [26]. Figure 51 Shows a 

returning pulse-train and the associated detector array, as well as the autocorrelation 

function of the pulse-train: 

Original template: 
 
Incoming pulse-train: 
 
τ = -11                                                                                                
 
 
τ = -5 
 
 
τ = -2 
 
 
τ = 0 
 
 
τ = 3 
 
Autocorrelation Function: 
 
 
 
 
 
  
 
           Figure 51: The correlation of a radar code pulse train with an image of itself 
 
Let each pulse be of  one unit duration. Thus, when an incoming string matches the 

original template there can be at most one incoming pulse. In the absence of noise, then, 

the unnormalized out-of-synch autocorrelation can attain a maximum of 1. A dip in the 

0     1                    4                       9           11

τ: -11 -6 0 6 11
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autocorrelation occurs in ±6 time units, since there are no pulses  which are aligned with 

a six-unit shift of  the pulse sequence out of its synch position. Six, of course, is the only 

distance of 11 units that the original Golomb ruler could not measure and the only 

numbering missing in numbering of  K5. For further applications of this type of problem 

see [26, 27]. 
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